Lesson 2

Uninterruptible Power Supply Multi-Loop Control Employing Digital Predictive Voltage and Current Regulators
Goal of the work

Investigation of digital predictive voltage and current regulators in multi-loop configuration for UPS’s

Motivations:

• high dynamic performance (i.e. low THD with distorting loads, low overshoot under step load changes, etc…);

• simple control design and implementation
Presentation outline

- Control technique derivation:
 - current loop
 - voltage loop
- Design criteria and implementation issues
- Simulation results
- Experimental results
UPS system structure and model

Single-phase scheme

Averaged model
The control equation assumes that:

\[i_L(k+1) = i_L(k) + \frac{T_s}{L} \cdot [v(k) - v_o(k)] \]

+ one sample delay

The model works properly in the UPS case if the sampling frequency is much higher (e.g. 15-20 times) than the resonance frequency of the output LC filter.
Current control loop
Review of deadbeat control

Dead-Beat Current Control Equation (DBCCE)

\[v_m(k + 1) = \frac{L}{T_s} \left[i_L^*(k) - i_L(k) \right] - v_m(k) + v_o(k) + v_o(k + 1) \]
Current control loop

Step response of the closed-loop current control. Sampling frequency: 15 kHz

Two sample delay
Voltage control loop

• The same reasoning used for dead-beat current loop can be applied also to the voltage loop.

• A key point is to make the sampling period of the voltage control equal to TWICE the sampling period of the current loop.

• Thus, the current closed loop control can be modeled as a simple delay (i.e. a two sampling period delay).
Voltage control loop

The control equation assumes that:

\[v_o(k + 1) = v_o(k) + \frac{2 \cdot T_s}{C} \cdot [i_L(k) - i_o(k)] \]

+ one sample delay

Simple load model

Dead-Beat Voltage Control Equation (DBVCE)

\[i_L^*(k + 1) = \frac{C}{2 \cdot T_s} \cdot [v_o^*(k) - v_o(k)] - i_L(k) - i_o(k) - i_o(k + 1) \]

Load current sensing
Voltage control loop

Step response of the closed-loop voltage control. Sampling frequency: 7.5 kHz

Two sample delay
Voltage control loop
Load current estimation

- The load current does not need to be measured
- The following dead-beat (system poles in the origin) estimation is derived (DBEE):
 \[
 \tilde{i}_o(k - 1) = \frac{C}{T_s} \cdot [v_o(k) - v_o(k - 1)] - i_L(k - 1)
 \]
- Estimation with system poles away from the origin implies a IIR low-pass filter on the estimated current (*)
- Practically, a moving average (FIR) filter with 4 taps was used
Voltage control loop
Control refinements

• **Feedforward of capacitor current reference**
 (obtained from output voltage reference).

• **Feedforward of the estimated load current.**

• **Interpolation between samples**
 (reduction of oscillations on inverter voltage at half of the
 sampling frequency).

• **Detuning of voltage control**
 (voltage estimation at instant k+1 with system pole away from the origin
 (low-pass filtering action) - lower sensitivity to noise).
Voltage control loop
Control refinements

Feedforward of the estimated load current (DBEE) allows the voltage dynamic equation to re-written:

\[v_o(k + 1) = v_o(k) + \frac{2 \cdot T_s}{C} \cdot [i_L(k) - i_o(k)] \]

\[v_o(h + 1) = v_o(h) + \frac{2 T_s}{C} \cdot i^*_c(h - 1) \]

h is the index for $2T_{sw}$ sampling period
Feedforward of also the capacitive current allows DBVCE to be re-written:

\[
\Delta i_c^* (h) = \frac{C}{2 \cdot T_s} \cdot [v_o^* (h) - v_o (h)] - \Delta i_c^* (h - 1)
\]

Where \(\Delta i_c^* \) stands for the deviation of the \(i_c^* \) current from its feed-forwarded value.
Voltage control loop
Control refinements

Linear interpolation can be used to re-construct the "missing" current sample. This modifies again the voltage dynamic equation:

\[v_o(h+1) = v_o(h) + \frac{T_s}{C} \cdot \left[\frac{5}{2} i_c^*(h-1) - \frac{1}{2} i_c^*(h-2) \right] \]

and generates the following control equation:

\[\Delta i_c^*(h) = \frac{2}{5} \frac{C}{T_s} \cdot [v_o^*(h) - v_o(h)] - \frac{4}{5} \Delta i_c^*(h-1) + \frac{1}{5} \Delta i_c^*(h-2) \]
Voltage control loop
Control timing

Voltage control

Current control

Interpolated samples

Inverter voltage

August 2001 Lesson 2
Voltage control loop
Effects of Interpolation

Average voltage generated by VSI without interpolation

without interpolation
Voltage control loop
Effects of Interpolation

Average voltage generated by VSI

with interpolation
Voltage control loop
Load current estimation
Actual and estimated load current

Zoh approximation
Voltage control loop
Load current estimation
Actual and estimated load current

Foh approximation
Voltage control loop
De-tuning

To improve the controller’s robustness it is possible to de-tune the voltage loop. This implies the allocation of the controller pole away from the origin of the complex plane.

\[\Delta v_o(h + 1) = \Delta v_o(h) + \frac{2T_s}{C} \cdot \Delta i_c^*(h - 1) \]

Voltage dynamic equation for the deviations from the ideal trajectory.
The control law which ensures a dead-beat response is simply given by:

$$\Delta i_c^*(h) = -\frac{C}{2T_s} \hat{\Delta v}_o(h + 1)$$

where $\hat{\Delta v}_o$ represents the estimated output voltage deviation (due to calculation delay we can’t use the actual deviation).
The estimator can have the classical Luenberger structure. K_s allows to select the pole location.

$$\Delta \hat{v}_o(h + 1) = \Delta \hat{v}_o(h) + \frac{2 T_s}{C} \cdot \Delta i_c^*(h - 1) + K_s \left(\Delta v_o(h) - \Delta \hat{v}_o(h) \right)$$

If the pole is located in the origin (dead-beat estimator) we have the usual DBVCE for the deviation. Otherwise we have a de-tuned controller with a first order response.
Control block diagram

Output filter capacitor and load model
Control block diagram

Deadbeat current control
Control block diagram

Feedforward of the estimated load current
Control block diagram

Feed-forward of capacitive current

Load current estimator

Current control

$Z_C(z)$

$Z_0(z)$

V_o^*

V_o
Control block diagram

Deadbeat voltage control

August 2001 Lesson 2
Control block diagram

Feed-forward of capacitive current

Voltage control

Current reference interpolation

Current control

Load current estimator

Z_o(z)

Z_C(z)

Capacitor current reference interpolation
Control block diagram

Final scheme
Control implementation

• The control program is implemented by means of a floating point DSP:
 – ADSP21062: 33 Mips, 30 ns instruction cycle

• The power converter is controlled by a motion control oriented fixed point DSP:
 – ADMC401: 26 Mips, 38.5 ns instruction cycle

• The two units are interfaced by means of a dual port RAM (1kword). A suitable communication protocol is implemented.
Control implementation

Scheme and timing of the control system

August 2001 Lesson 2
Control implementation

- The control program is written in C language, and the AD C-compiler for the ADSP 21062 is used.

- Given the very high performance of the DSP unit, no timing problem is encountered, even for very complex algorithms and 20 kHz operating frequency.

- Data exchange between the two units is dealt with by means of simple data memory write (DM) instructions.
August 2001

Lesson 2

50% increase compared to PI control

Timing of the control algorithm

Dead-beat voltage control interpolation

Load current estimation

Capacitor current estimation

Dead-beat current control

12 [μs]

A/D conversion

k is even

yes

no

Eq. 11

Interpolation

Δir_c(h)

DBEE

Feed-forward of \(\hat{i}_c \)

DBCCE

\(v_m(k+1) \)

Dead time compensation

DC link feed-forward
Experimental results

Experimental prototype’s parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output power</td>
<td>P_o</td>
<td>1</td>
<td>[kVA]</td>
</tr>
<tr>
<td>Nominal output voltage</td>
<td>V_{oRMS}</td>
<td>115</td>
<td>[V]</td>
</tr>
<tr>
<td>Minimum load DF</td>
<td>$\cos \phi$</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>DC link voltage</td>
<td>V_{DC}</td>
<td>250</td>
<td>[V]</td>
</tr>
<tr>
<td>Output frequency</td>
<td>f_o</td>
<td>50</td>
<td>[Hz]</td>
</tr>
<tr>
<td>Output inductor</td>
<td>L</td>
<td>1.8</td>
<td>[mH]</td>
</tr>
<tr>
<td>Output capacitor</td>
<td>C</td>
<td>120</td>
<td>[μF]</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_s</td>
<td>15</td>
<td>[kHz]</td>
</tr>
</tbody>
</table>
Experimental results

Step load variations
100% - 0%

Output voltage
[100V/div]

Current reference
[10A/div]

Actual current
[10A/div]
Experimental results

- Output voltage [100V/div]
- Reference voltage [200V/div]
- Load current [10A/div]
- Estimated current [10A/div]
- Step load variations 100% - 0%

Tek Stop: 100kS/s 12 Acqs
Experimental results

Distorting load

Output voltage [100V/div]
Reference voltage [200V/div]
Load current [10A/div]
Estimated current [10A/div]

THD=3.4%
Experimental results

Distorting load

Output voltage
[100V/div]

Current reference
[10A/div]

Actual current
[10A/div]

THD = 3.4%
Experimental results

Distorting load
PI control

THD=6.0%

Output voltage [100V/div]

Current reference [10A/div]

Actual current [10A/div]
Reference