Fundamental Definitions

Electromagnetic Compatibility

• The capability of electrical and electronic systems, equipment, and devices to operate in their intended electromagnetic environment within a defined margin of safety, and at design levels of performance, without suffering or causing unacceptable degradation as a result of electromagnetic interference.

Fundamental Definitions

Electromagnetic Interference (EMI)

• EMI is the process by which disruptive electromagnetic energy is transmitted from one electronic device to another via radiated and/or conducted paths. In common usage, EMI refers particularly to RF signals, but it can occur in any frequency range starting from DC.
Fundamental Definitions

Susceptibility

• A relative measure of a device or a system’s propensity to be disrupted or damaged by EMI exposure to an incident field of signal. It is the lack of immunity

Immunity

• A relative measure of a device or system’s ability to withstand EMI exposure while maintaining a predefined performance level

Radiated Immunity

• A Product’s relative ability to withstand electromagnetic energy that arrives via free-space propagation

Conducted Immunity

• A Product’s relative ability to withstand electromagnetic energy that penetrates it through external cables, power cords, and I/O interconnects
Fundamental Definitions

Electrostatic Discharge (ESD)

- A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact. The term ESD is generally applied to events that are triggered by human beings.

Fundamental Definitions

Containment

- A process whereby RF energy is prevented from exiting an enclosure, generally by shielding a product within a metal enclosure. Reciprocally, we can also speak of containment as preventing RF energy from entering the enclosure.
Fundamental Definitions

Suppression

• The process of reducing or eliminating RF energy that exists without relying on a secondary method, such as a metal housing or chassis. Suppression may include shielding and filtering as well.

EMI Transmission Path

Source -> Channel -> Receiver

Interference can be reduced acting on:

• Source (layout, filtering, shielding)
• Channel (layout)
• Receiver (layout, filtering, shielding)

NOTE: EMI is most economically suppressed at the source in the design phase.
Relevant EMI “Components”

- Only one third of the components affecting EMI are on the schematics
- Another third are parasitic elements within components
- The final third are created by PC board trace routing, and component mounting, placement, and even orientation

Resistivity of a Cylindric Conductor

DC:

\[r_{BF} = \frac{4}{\sigma \pi D_w^2} \] \([\Omega / m]\)

AC:

\[\delta = \sqrt{\frac{1}{\sigma f}} \]

(Skin depth \(\delta\) \(\sigma =\) conducibility)

\[r_{AF} \approx \sqrt{\mu \sigma \sqrt{f}} \] \([\Omega / m]\)
Resistivity of a Cylindric Conductor

DC:
\[r_{BF} = \frac{4}{\sigma \pi D_w^2} \quad [\Omega / m] \]

AC:
\[\delta = \frac{1}{\sqrt{\mu_0 \sigma \pi f}} \quad \text{Skin depth} \quad (\sigma = \text{conducibility}) \]
\[r_{AF} = \frac{1}{D_w} \sqrt{\frac{\mu_0}{\pi \sigma}} \sqrt{f} \quad [\Omega / m] \]

Internal and External Inductances

\[l_i \equiv \frac{1}{4 \pi r_w} \sqrt{\frac{\mu_0}{\pi \sigma}} \frac{1}{\sqrt{f}} \quad [H / m] \]

\[l_e \equiv \frac{\mu_0}{\sigma} \cosh\left(\frac{s}{\sigma}\right) \quad [H / m] \]

Giorgio Spiauzzi - University of Padova - Italy
Internal and External Inductances

\[l_i \equiv \frac{1}{4\pi r_w} \sqrt{\frac{\mu_0}{\pi \sigma}} \frac{1}{\sqrt{f}} \quad [\text{H/m}] \]

\[l_e \equiv \frac{\mu_0}{\pi} \text{acosh} \left(\frac{s}{2r_w} \right) \quad [\text{H/m}] \]

Impedance per Unit Length

Two conductors AWG20 (26x34) at 2 mm distance (copper): \(l_e \approx 567 \text{ nH/m}, r_{BF} \approx 26 \text{ m\Omega/m} \)
Parasitic Components of a Capacitor

\[Z(j\omega) = R_s + j\omega L + \frac{R_p}{1 + j\omega R_p C} \]

- \(R_s \) = series resistance (ESR)
- \(R_p \) = parallel resistance
- \(L \) = series inductance (ESL)

Parasitic Inductor

\[L = L_s + L_i + L_w \]

- \(L_s \) = inductance of the wound structure
- \(L_i \) = inductance of internal leads
- \(L_w \) = inductance of connecting wires

\[L_w = 2l_w \left(\ln \left(\frac{4l_w}{d_w} \right) - 1 \right) 10^{-7} \text{ [H]} \]

- \(l_w \) = length of connecting wires [m]
- \(d_w \) = diameter of connecting wires [m]
Parasitic Inductor

\[L = L_s + L_i + L_w \]

- \(L_s \) = inductance of the wound structure
- \(L_i \) = inductance of internal leads
- \(L_w \) = inductance of connecting wires

\[L_w = 2l_w \left(\ln \left(\frac{4l_w}{d_w} \right) - 1 \right) 10^{-7} \quad [H] \]

- \(l_w \) = length of connecting wires [m]
- \(d_w \) = diameter of connecting wires [m]

Impedance of a “Real” Capacitor

\[\frac{1}{\omega C} = R_p + R_s \]

\[|Z(j\omega)| = \omega \omega_0 \]

\[\omega_0 = \sqrt{\frac{1}{L C}} \]
Impedance of a “Real” Capacitor

\[
|Z(j\omega)| = \frac{1}{\omega C} \quad \quad \omega_o = \frac{1}{\sqrt{LC}}
\]

Approximate Usable Frequency

- Mica, Glass, Low-Loss Ceramic
- Paper, Metalized Paper
- High-K Ceramic
- Al. Electrolytic
- Tantalum Electrolytic
- Mylar
- Polystyrene

Frequency [Hz]

\[
10^0 \quad 10^1 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6 \quad 10^7 \quad 10^8 \quad 10^9 \quad 10^{10}
\]
Parasitic Elements of an Inductor

\[Z(j\omega) = \frac{R + j\omega L}{1 + j\omega RC - \omega^2 LC} \]

\(R = \text{series resistance} \)
\(C = \text{parallel capacitance} \)

Impedance of a “Real” Inductor

\[\omega_0 = \sqrt{\frac{L}{C}} \]
Impedance of a “Real” Inductor

\[|Z(j\omega)| \]

\[\omega L \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

EMI Common Sources

- **Electronic circuits**
 - Diode recovery
 - Switching components (SCR, IGBT, MOS)
 - Driving current pulses
 - Digital gates

- **Magnetic components**
 - Transformers
 - Inductors

- **Circuit layout**
 - High \(dv/dt\) in long wires
 - High \(di/dt\) in wide loops
 - High current wires

- **Mechanical switches**
 - relay (bounces, sparks, inrush currents)
Conducted Mode Signals

Differential mode

\[U_d = U_1 - U_2, \quad I_d = \frac{I_1 - I_2}{2} \]

Common mode

\[U_c = \frac{U_1 + U_2}{2}, \quad I_c = I_1 + I_2 \]

Radiated Signals

Differential mode

Common mode

Giorgio Spiazzi - University of Padova - Italy
Example of Radiated Signals

Boost rectifier

Conducted Noise

Common mode: parasitic capacitances between AC hot traces and chassis

Differential mode: current ripples and spikes

- Switching devices can be seen as noise generators impressing noise voltages or injecting noise currents in the circuit
- Filters and parasitic elements must be taken into account in order to determine noise current and voltage amplitudes
Radiated Electric Field
Parasitic capacities to free space

Noise coupled to core through winding-core capacitances

AC hot traces

Giorgio Spiazzi - University of Padova - Italy

Radiated Magnetic Fields
Typical input and output switching loops

stray transformer and choke fields

Giorgio Spiazzi - University of Padova - Italy
Capacitive Coupling

$C_{12} = \text{parasitic capacitance between conductors 1 and 2}$

Conductor 1

Conductor 2

U_1

C_{12}

U_2N

R

C_{2G}

Equivalent circuit

Voltage noise U_{2N} induced in conductor 2

$$U_{2N} = \frac{j\omega}{j\omega + \frac{1}{R \cdot C_{12} + C_{2G}}} \cdot \frac{C_{12}}{C_{12} + C_{2G}}$$
Capacitive Coupling

Equivalent circuit

Voltage noise U_{2N} induced in conductor 2

$$\frac{U_{2N}}{U_1} = \frac{j\omega}{j\omega + \frac{1}{R(C_{12} + C_{2G})}} \cdot \frac{C_{12}}{C_{12} + C_{2G}}$$

Giorgio Spiazzi - University of Padova - Italy
Capacitive Coupling

Voltage noise U_{2N} induced in conductor 2

\[\frac{U_{2N}}{U_1} = \frac{C_{12}}{C_{12} + C_{2G}} \]

\[\omega_c = \frac{1}{R(C_{12} + C_{2G})} \]

Capacitive Coupling

Grounded shield

Giorgio Spiazzi - University of Padova - Italy
Capacitive Coupling
Grounded shield

\[U_{\text{2N}} = 0 \]

Spectrum Envelope of a Trapezoidal Periodic Signal

\[d = \frac{\tau}{T} \quad \text{duty - cycle} \]

\[f_1 = \frac{2A_f_0}{\pi f} \quad f_2 = \frac{2A_f_0}{2f} \]
Spectrum Envelope of a Trapezoidal Periodic Signal

\[x(t) = \begin{cases} A & \text{for } 0 \leq t < \tau \\ 0 & \text{for } \tau \leq t < T \\ A & \text{for } T \leq t < 2T \\ 0 & \text{for } 2T \leq t < T \\ \end{cases} \]

\[d = \frac{\tau}{T} \quad \text{duty - cycle} \]

\[f_1 = \frac{1}{\pi \tau} \]

\[f_2 = \frac{1}{\pi t_r} \]

\[2Af_o \]

\[\frac{2Af_o}{\pi f} \]

\[\frac{2Af_o}{\pi^2 f^2 t_r} \]

Giorgio Spiazzi - University of Padova - Italy

Effect of Duty-Cycle Variations

\[d_2 < d_1 \]

\[f_o \]

\[f_0 \]

Giorgio Spiazzi - University of Padova - Italy
Effect of Duty-Cycle Variations
d_2 < d_1

Effect of Rise and Fall Time Variations
Effect of Rise and Fall Time Variations

\[dB_{\mu V} \]

\[2Ad \]

\[\tau_{r2} < \tau_{r1} \]

\[f [MHz] \]

\[\frac{1}{\pi \tau_{r1}} \quad \frac{1}{\pi \tau_{r2}} \]

Effect of Repetition Frequency Variations

NOTE: change the distance between discrete harmonics nf₀

\[dB_{\mu V} \]

\[2Ad \]

\[f_{02} > f_{01} \]

\[f [MHz] \]

\[f_{01} \quad f_{02} \]

Giorgio Spiazzi - University of Padova - Italy
Effect of Repetition Frequency Variations

NOTE: change the distance between discrete harmonics $n f_0$

Inductive Coupling

Giorgio Spiazzi - University of Padova - Italy
Inductive Coupling

Equivalent circuit

\[
\begin{align*}
U_{2N}^{i_1} & = \frac{j\omega}{j\omega + \frac{R + R_2}{L}} \cdot \frac{MR}{L} \\

\end{align*}
\]

Voltage noise \(U_{2N}\) induced in conductor 2

Giorgio Spiazzi - University of Padova - Italy

Inductive Coupling

\[
\begin{align*}
\frac{|U_{2N}|}{i_1} & \propto \frac{MR}{L} \\

\end{align*}
\]

Giorgio Spiazzi - University of Padova - Italy
Inductive Coupling

\[\frac{|U_{2N}|}{i_1} \]

\[R + R_2 \]

\[\omega \]

MR

L

\[\frac{R + R_2}{L} \]

Giorgio Spiazzi - University of Padova - Italy

Inductive Coupling

Shield grounded at both ends

Giorgio Spiazzi - University of Padova - Italy
Inductive Coupling

Shield grounded at both ends

\[i_1 \rightarrow \text{Shield} \rightarrow R_2 \rightarrow R \rightarrow U_{2N}^+ \]

Shield acts as a short-circuited transformer secondary

Chassis Ground

- Also often a “safety ground”
- Includes metallic chassis, framework, etc.
- Often tied to a true “earth”
- As a rule, not used as a power return conductor (except in some low-voltage DC applications, like autos)
- Also common mode conducted noise return
Circuit Ground

- Usually refers to “circuit common”
- May be connected to chassis ground, but is best considered as separate and isolated during design
- Often the negative rail in DC systems, but the positive voltage rail may also be used

AC Quiet Rail

- Also known as AC LOW or RF LOW
- Used for local HF bypassing in EMI control
- Typically one of the DC or LF AC supply rails
- Not necessarily the same as circuit common

Ground Plane

A large metallic area (typ. on a PC board), which serves as:

- Magnetic field reduction through image currents
- Electrostatic faraday shield
- Circuit common / power return
- AC quiet rail
- Thermal Heat spreader
- Printed circuit board stiffening
- Typically not connected to chassis ground, but may be in some cases (usually undesirable for EMI)
Single-Point Grounding

Series connection

The most sensitive circuit must be closest to the physical ground point (#1)

Parallel connection

Difficult at high frequency (long connections)
Multiple Ground Points

Ground connection is minimized

A	Signal path
B	Shortest low-frequency return path (smaller resistance)
C	Shortest high-frequency return path (smaller inductance)

Different current components follow different return paths

- Voltage drop on ground paths can be significant for high amplitude and high-frequency currents
- Actual current path is that with lowest impedance
- Ground planes are preferable in high frequency applications
Ground Plane Separation

Return currents of each circuit remain separated

Common Impedance Coupling Path

\[U_{s1} = (Z_{s1} + Z_{L1} + Z_C)I_1 + Z_CI_2 \]

Noise Voltage
Magnetic/Inductive Coupling Design Considerations

• Parasitic inductance is reduced with:
 – larger or wider conductors
 – smaller conductor spacing (lower magnetic field volume and energy)

• Magnetic field is reduced with:
 – magnetic shielding (high permeability or conductive)
 – generation of quadrapole (or higher order) fields with ground planes (image currents), twisted wires, etc.

Magnetic Field Reduction with a Ground Plane

• Effect much higher behind ground plane
 – front: reduction due to image currents (quadrupole effect)
 – rear: eddy current field cancellation

• Ground plane slits and slots under conductors greatly reduce its effectiveness

• Thin solid ground plane better than thick planes with slits or slots
Far Field Intensity

Monopole field:
Field intensity $\propto 1/R^2$

Dipole field:
Field intensity $\propto 1/R^3$

Quadrupole field:
Field intensity $\propto 1/R^4$

Ground Plane Effect

E and H fields distribute themselves as if a mirror image conductor existed at the opposite side of the ground plane, with an equal current in the opposite direction.

Transmission line impedance Z_0 is half of “imaged” line impedance.
Magnetic Field Reduction with a Ground Plane

Solid conductor ground plane

PC trace

Image current

Counter-flowing image currents caused by a ground plane create a quadrapole magnetic field

Giorgio Spiazzi - University of Padova - Italy

Imperfections in the Ground Plane

PC trace on the other side of the PC board

An open path in the ground plane creates a "slot antenna"

A break in the ground plane further reduces image current effect

Giorgio Spiazzi - University of Padova - Italy
Printed Circuit Power Conductors

Patterns for magnetic mid and far field intensities

Best, but usually not practical

Very good, sometimes practical

Ground plane
Image currents
Acceptable, due to quadrupole field from ground plane

Giorgio Spiazzi - University of Padova - Italy
Printed Circuit Power Conductors

Patterns for magnetic mid and far field intensities

Poor, large dipole field and high AC losses due to current concentration on adjacent edges

Unacceptable, very large dipole field (lower AC losses than the previous pattern)

High di/dt Loops in a Forward Converter

1) Output transformer secondary - rectifier loop
High di/dt Loops in a Forward Converter

2) Input switch-primary-bypass capacitor loop

3) Snubber loops on output rectifiers and input switches
High di/dt Loops in a Forward Converter

4) Switch drive loops

5) Output filter inductor-capacitor loops
High di/dt Loops in a Forward Converter

6) Logic and control circuit loops, input filter loops

Avoiding Loop Antennas

Ring core Inductor

Snubber component layout

Giorgio Spiazzi - University of Padova - Italy
Transformer External Leakage Field

Dipole Field

Minimum external field

Common (worst)

Quadrupole Field

Transformer External Leakage Field

Moderate external field

High external field

Giorgio Spiazzi - University of Padova - Italy
Shielding High-Frequency Magnetic Field

- Using short circuit loops to generate an opposing magnetic field

Example: transformer

![Diagram of a transformer with a core, winding, and conducting shield. The conducting shield acts as a short circuit loop, reducing leakage flux.]

Shielding Low-Frequency Magnetic Field

- Providing a low-reluctance magnetic path to divert the field around the circuit being protected

![Diagram showing a shielded region with a magnetic field and a shield of magnetic material.]

Giorgio Spiazzi - University of Padova - Italy
Magnetic Field Minimization

- Minimize leakage fields from transformer
 - use a sandwiched winding construction
 - use an electromagnetic shield strap
- Minimize leakage fields from inductors
 - avoid external air gaps
 - use uniform windings on “powdered iron” type of toroidal cores

Electric/Capacitive Coupling Design Considerations

- Much easier to shield than magnetic field
- Electric field sources of EMI can be reduced by:
 - using power circuit topologies with low semiconductor case AC potentials
 - using power transformer electrostatic shields
 - bypassing power magnetic cores to AC quiet
 - minimizing AC hot conductors length and area, increasing spacing
 - using faraday shields (often ground plane)
- Conductor geometries which reduce mid and far fields also minimize external noise pickup
High dv/dt nodes in a Forward Converter

1) Transformer primary driving secondary and core (high node capacity)

2) Primary switch driving heat sink (high node capacity)
High dv/dt nodes in a Forward Converter

3) Transformer secondary driving primary and core (high node capacity)

4) Rectifier cases driving heat sinks (high node capacity)
High dv/dt nodes in a Forward Converter

5) Primary switch “AC hot” PC trace

6) Output rectifier “AC hot” PC traces
7) Snubber and clamp nodes, in some circuits

8) Switch drive (particolarly FETs)
High dv/dt nodes in a Forward Converter

9) Digital logic traces

Electrostatic Shields in H.F. Transformers

Unshielded Transformer

Primary winding to core capacitance

Secondary winding to core capacitance

Primary to secondary winding capacitance

Giorgio Spiazzi - University of Padova - Italy
Electrostatic Shields in H.F. Transformers

Shielded Transformer

Alternative shield connection provided an input bypass capacitor is used

Noise current path

Incorrect shield connection

Noise current path through large ground loops

Giorgio Spiazzi - University of Padova - Italy
Electrostatic Shields in H.F. Transformers

Shielded Transformer: primary and secondary shield connections

Electrostatic Shields in H.F. Transformers

Shielded Transformer: a third grounded shield can now be used for safety and/or to minimize feedthrough of source common mode noise

Common mode Noise source
Electrostatic Shields in H.F. Transformers

Check for shield current paths

Large current loop and through ground

Small current loop not through ground

Giorgio Spiazzi - University of Padova - Italy

Electrostatic Shields in H.F. Transformers

Shield effectiveness at high frequencies is limited by shield capacity and lead inductance. Use a series resistance for damping

Resonant circuit

Damping resistance

Giorgio Spiazzi - University of Padova - Italy
Electrostatic Shields Design Tips

Electrostatic shield should:

• form a full coverage, non-shorting turn
• have uniform insulation thicknesses
• consist of relatively thin and resistive material
 – 0.003” brass is generally suitable
 – down to 0.001” brass preferred at f > 1MHz
• be center tapped
• have a short drain wire connection, preferably foil closely spaced to foil winding breakouts

Common Mode Noise Minimization

Minimize all sources of HF AC coupling to chassis

• Minimize AC hot traces on chassis side of PCB
• Use “common” traces to shield AC hot traces
• Avoid mounting AC hot cases on grounded heat sinks
• Tie power magnetic cores to AC quiet

Minimize all coupling of HF AC from input to output

• Keep primary and secondary circuits well separated
• Nearest primary and secondary conductors should “commons”
• Use shields in isolation transformers

Giorgio Spiazzi - University of Padova - Italy
Shielding AC Hot Traces and Cases

Connection of Capacitors

Mutual inductance coupling. The same L_m coupling occurs with shorted, isolated PC traces of the same geometry (typically 2-20 nH)
Connection of Capacitors

Some ESL

Some L_m

Close spacing

Preferred alternative

General Layout Considerations 1°

- In general, the power, drive, and logic physical layout should resemble a neat schematic
- Keep isolated circuits physically separated
- Keep noisy power circuits away from logic and low-voltage control circuitry
- Keep power switching circuits away from filtered inputs and outputs
- Place drivers close to switches and away from logic
- Parallel discrete or dual diodes with caution: different T_{rr} can excite HF oscillations

Giorgio Spiazzi - University of Padova - Italy
General Layout Considerations 2°

- Minimize component lead inductances
 - surface mount components are preferred
 - radial leaded components should be mounted normal to the PCB (i.e. standing up)
 - axial leaded components should be mounted parallel to the PCB (i.e. laying down)
 - keep leads as short as possible (ESL is proportional to lead length)
- keep snubber and clamp loops as small and close to snubbed devices as possible

Linear Power Path

Minimize noise coupling from switching circuits into input and outputs

Giorgio Spiazzi - University of Padova - Italy
Folded Power Path 1°
Still good layout

Folded Power Path 2°
Less desirable layout